Abstract:Clustering is a significant data processing technique in data mining field. An improved multi-objective clustering algorithm based on quantum particle swarm optimization is proposed. Firstly, an integer coding strategy is introduced for the unknown class centers. Then, an effective particle swarm optimization strategy is designed based on Canopy strategy to predict the number of class centers. An improved discrete quantum update formula is defined to update the particle position by introducing versus, and and difference operators. Finally, the proposed algorithm is applied to seven real datasets and compared with two typical single-objective clustering algorithms and three multi-objective clustering algorithms. Experimental results demonstrate the effectiveness of the proposed algorithm.
[1] KAUFMAN L, ROUSSEEUW P J. Finding Groups in Data: An Introduction to Cluster Analysis. New York, USA: John Wiley & Sons, 2009. [2] 杨 宁,唐常杰,王 悦,等.一种基于时态密度的倾斜分布数据流聚类算法.软件学报, 2010, 21(5): 1031-1041. (YANG N, TANG C J, WANG Y, et al. Clustering Algorithm on Data Stream with Skew Distribution Based on Temporal Density. Journal of Software, 2010, 21(5): 1031-1041. [3] KENNEDY J, EBERHART R. Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks. New York, USA: IEEE, 1995, IV: 1942-1948. [4] EBERHART R, KENNEDY J. A New Optimizer Using Particle Swarm Theory // Proc of the 6th International Symposium on Micro Machine and Human Science. Washington, USA: IEEE, 1995: 39-43. [5] CURA T. A Particle Swarm Optimization Approach to Clustering. Expert Systems with Applications, 2012, 39(1): 1582-1588. [6] RANA S, JASOLA S, KUMAR R. A Review on Particle Swarm Optimization Algorithms and Their Applications to Data Clustering. Artificial Intelligence Review, 2011, 35(3): 211-222. [7] CHUANG L Y, HSIAO C J, YANG C H. Chaotic Particle Swarm Optimization for Data Clustering. Expert Systems with Applications, 2011, 38(12): 14555-14563. [8] 巩敦卫,蒋余庆,张 勇,等.基于微粒群优化聚类数目的K-均值算法.控制理论与应用, 2009, 26(10): 1175-1179. (GONG D W, JIANG Y Q, ZHANG Y, et al. K-mean Algorithm for Optimizing the Number of Clusters Based on Particle Swarm Optimization. Control Theory & Applications, 2009, 26(10): 1175-1179.) [9] KORKMAZ E E, DU J, ALHAJJ R, et al. Combining Advantages of New Chromosome Representation Scheme and Multi-objective Genetic Algorithms for Better Clustering. Intelligent Data Analysis, 2006, 10(2): 163-182. [10] ZHONG Y F, ZHANG S, ZHANG L P. Automatic Fuzzy Clus-tering Based on Adaptive Multi-objective Differential Evolution for Remote Sensing Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5): 2290-2301. [11] PRAKASH J, SINGH P K. An Effective Multiobjective Approach for Hard Partitional Clustering. Memetic Computing, 2015, 7(2): 93-104. [12] ABUBAKER A, BAHARUM A, ALREFAEI M. Automatic Clus-tering Using Multi-objective Particle Swarm and Simulated Annealing. PLoS One, 2015, 10(7). DOI: 10.1371/journal.pone.0130995. [13] SUN J, XU W B, FENG B. A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization // Proc of the IEEE Confe-rence on Cybernetics and Intelligent Systems. Washington, USA: IEEE, 2004: 111-116. [14] STORN R, PRICE K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 1997, 11(4): 341-359. [15] HANDL J, KNOWLES J. An Evolutionary Approach to Multiobjective Clustering. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 56-76. [16] HRUSCHKA E R, CAMPELLO R J G B, FREITAS A A, et al. A Survey of Evolutionary Algorithms for Clustering. IEEE Transactions on Systems, Man, and Cybernetics(Applications & Reviews), 2009, 39(2): 133-155. [17] CHOI S S, CHA S H, TAPPERT C C. A Survey of Binary Simila-rity and Distance Measures. Journal of Systemics, Cybernetics & Informatics, 2010, 8(1): 43-48. [18] 毛典辉.基于MapReduce的Canopy-Kmeans改进算法.计算机工程与应用, 2012, 48(27): 22-26. (MAO D H. Improved Canopy-Kmeans Algorithm Based on MapReduce. Computer Engineering and Applications, 2012, 48(27): 22-26.) [19] 刘远超,王晓龙,刘秉权,等.信息检索中的聚类分析技术.电子与信息学报, 2006, 28(4): 606-609. (LIU Y C, WANG X L, LIU B Q, et al. The Clustering Analysis Technology for Information Retrieval. Journal of Electronics & Information Technology, 2006, 28(4): 606-609.) [20] GARZA-FABRE M, TOSCANO-PULIDO G, COELLO C A C. Two Novel Approaches for Many-Objective Optimization // Proc of the IEEE Congress on Evolutionary Computation. Washington, USA: IEEE, 2010. DOI:10.1109/CEC.2010.5585930. [21] 张 勇.区间多目标优化问题的微粒群优化理论及应用.博士学位论文.徐州:中国矿业大学, 2009. (ZHANG Y. Theory of Particle Swarm Optimization for Interval Multi-objective Optimization Problems and Applications. Ph.D Dissertation. Xuzhou, China: China University of Mining and Technology, 2009.) [22] PRAKASH J, SINGH P K. An Effective Multiobjective Approach for Hard Partitional Clustering. Memetic Computing, 2015, 7(2): 93-104. [23] COELLO C A C, PULIDO G T, LECHUGA M S. Handling Multiple Objectives with Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. [24] DEB K, AGRAWAL S, PRATAP A, et al. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II // Proc of the 6th International Conference on Pa-rallel Problem Solving from Nature. London, UK: Springer-Verlag, 2000, VI: 849-858. [25] SAHA S, BANDYOPADHYAY S. A Generalized Automatic Clustering Algorithm in a Multiobjective Framework. Applied Soft Computing, 2013, 13(1): 89-108.